• IVA 2014

    Posted on September 11, 2014 by admin in News Report, Research.

    Following our Learning Interaction Models project we adopted the framework for live user motion classification. The related paper (“A Data-Driven Method for Real-Time Character Animation in Human-Agent Interaction”) can be found here

    Here is a brief description:

    We address the problem of creating believable animations for virtual humans that need to react to the body movements of a human interaction partner in real-time. Our data-driven approach uses prerecorded motion capture data of two interacting persons and performs motion adaptation during the live human-agent interaction. Extending the interaction mesh approach, our main contribution is a new scheme for efficient identification of motions in the prerecorded animation data that are similar to the live interaction. A global low-dimensional posture space serves to select the most similar interaction example, while local, more detail-rich posture spaces are used to identify poses closely matching the human motion. Using the interaction mesh of the selected motion example, an animation can then be synthesized that takes into account both spatial and temporal similarities between the prerecorded and live interactions.


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>